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Structure

The talk will be very introductory.

Part 1: Basics and examples

Part 2: Overview of research.

We will state a lot of results in my research niche, but no proofs of these
results.



Part 1: Basics and examples



Left-orderable groups

Def: a group G is left-orderable if there exists a total order ≺ on the
elements of G which is invariant under left-multiplication:

g ≺ h ⇐⇒ fg ≺ fh, ∀g , h, f ∈ G .



Why study left-orderable groups: 4 applications

Used by Mineyev in a proof of the Hanna-Neumann conjecture. Let
H and K be non-trivial free groups. Then
rk(H ∩ K )− 1 ≤ (rk(H)− 1)(rk(K )− 1).

Related to zero divisor conjecture. Let R be a ring without zero
divisors and G be torsion free. The conjecture says that the group
ring RG has no zero divisors.
What is known: if G is left-orderable, then RG has no zero divisors.

Link with dynamics. For a countable group G , G is left-orderable iff
it is isomorphic to a subgroup of the set of orientation-preserving
homeomorphisms on R.

Very large classes of groups are orderable: fundamental groups of
surface groups are left-orderable except for the fundamental group
of the projective plane and RAAGs.



First example

Def: a group G is left-orderable if there exists a total order ≺ on the
elements of G which is invariant under left-multiplication:

g ≺ h ⇐⇒ fg ≺ fh, ∀g , h, f ∈ G .

(Z,+) has a natural left-order given by

· · · < −1 < 0 < 1 < 2 < . . .

The order is clearly invariant under addition.

The definition of left-order is completely symmetric and

· · · < 1 < 0 < −1 < −2 < . . .

is another left-order.



Equivalent notion: positive cone

We can look at left-orders in terms of sets called positive cones. Roughly
speaking, a positive cone is trying to capture the notion of additive
positivity in your group.

P ⊂ G is a positive cone for G if

PP ⊆ P (closed under semigroup operation),

G = P t P−1 t {1G} (trichotomy property).

Ex: (Z,+) admits a positive cone. Z/nZ does not.
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Suppose a group with torsion has a positive cone. Then is some element
g such that gn = 1. Then wlog if g ∈ P, gn = 1 ∈ P. Contradiction.



Equivalence of positive cone with left-order

Ex: (continued) (Z,+) admits this natural left-order

· · · < −1 < 0 < 1 < 2 < . . .

The left order is equivalent to defining positive elements

P = {z > 0 | z ∈ Z}

in the sense that
x < y ⇐⇒ −x + y > 0.



Equivalence of positive cone with left-order

The equivalence is easy to prove in general.

Claim: G admits a left-order iff it admits a positive cone.
( =⇒ ) The left-order < defines a positive cone

P< = {g ∈ G | 1 < g}.

If 1 < g then g−1 < 1. So G = P t P−1 t {1}.
If 1 < g and 1 < h then 1 < g < gh so PP ⊆ P.



Equivalence of a positive cone with left-order

(⇐= ) The positive cone P defines a left-order <P . Indeed, define

g <P h ⇐⇒ g−1h ∈ P.

This respects left-invariance because fg <P fh ⇐⇒ (fg)−1fh ∈ P but
(fg)−1fh = g−1f −1fh = g−1h ∈ P ⇐⇒ g <P h.

This is a total order because g−1h is either in P,P−1 or is equal to {1},
in which case g = h.



Closure Property 1: subgroups

If (G , <) is a left-orderable group and H ≤ G , then (H, <) is
left-orderable.

Clearly, if g < h ⇐⇒ fg < fh for all g , h, f ∈ G , this is also true if
g , h, f ∈ H.

ex: 2Z ≤ Z.
· · · < −2 < 0 < 2 < 4 < . . .



Closure Property 2: extensions

Let’s start with an example.
We know that Z is left-orderable. Z2 is also left-orderable viewed as
Z× Z.  
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A positive cone is for Z2 is given by

P = {anbm | n > 0 ∨ n = 0,m > 0}.

This is a lexicographic order with leading factor A, where A = 〈a〉
because P = {z ∈ Z2 | πA(z) ∈ PA ∨ πA(z) = 1A, πB(z) ∈ PB}.
P = PAB ∪ PB , where PA, PB are positive cones of Z.



Closure 2: extensions

This idea of composing positive cones generalizes to extensions.
Suppose you have 1→ N → G → Q → 1, with PN and PQ .

Then PQN ∪ PN is a positive cone for G since:

Every element can be written as g = qn, q ∈ Q, n ∈ N

Trichotomy: g is such that q ∈ PQ , q ∈ P−1Q or q = 1 and similarly for

n, so G = (PQN ∪ PN) t (PQN ∪ PN)−1 t {1}.
Semi-group closure: if g , h ∈ P such that g = qn, h = pm then
gh = qnpm = qp(p−1np)m = qp(n′m) where n′ ∈ N. Either both q,p
are in PQ or one of q, p ∈ PQ and the other is 1, but in both case
qp ∈ PQ =⇒ gh ∈ PQN ⊂ P, or q = p = 1, in which case
n′ = p−1np = n and then both n,m ∈ PN so gh ∈ PN ⊂ P.

We call this order a lexicographic order with leading factor Q.



Applications of extension lemma

Extensions of left-orderable groups are left-orderable. This already gives
us quite a lot just knowing that Z is left-orderable!

Poly-Z groups are left-orderable.

Recall G is poly-Z if we have a subnormal series
G = G0 E G1 E · · ·E Gn = {1} such that Gi/Gi+1

∼= Z.
Do induction on the length of the series.

Virtually poly-Z groups are poly-Z (Antoĺın, C. Rivas, and Su,
upcoming).

Solvable Baumslag-Solitar groups
B(1, q) = 〈a, b | aba−1 = bq, q 6= 1〉 can be viewed as a semi-direct
product of q-adic rationals and integers: Z[1/q] o Z.



Locally indicable groups

Def: A group G is locally indicable if every non-trivial, finitely
generated subgroup has a homomorphism onto Z.

Well-known fact: Locally indicable ⇒ left-orderable.

The proof of that fact does not give us an explicit order because it
relies on the following equivalence.

G is left-orderable iff for every finite set {g1, . . . , gn} of G which does
not contain the identity, there exists exponents εi = ±1 such that
1 6∈ 〈g ε11 , . . . , g εnn 〉+.

Once we have this equivalence, the εi can be given by the map onto Z.

Next: Sketch proof of equivalence and see where the non-explicit order
comes from.



Locally indicable groups

G is left-orderable iff for every finite set {g1, . . . , gn} of G which does
not contain the identity, there exists exponents εi = ±1 such that
1 6∈ 〈g ε11 , . . . , g εnn 〉+.

Proof sketch:
=⇒ choose εi ’s such that P ⊃ 〈g ε11 , . . . , g εnn 〉+ since gi or g−1i ∈ P.

⇐= says that we have a local to global relation: we can chose
exponents for finite sets of elements of G to form semigroups excluding
1, and these sets may grow larger and larger - limits are positive cones
which live in P(G ), and these limits exist by compactness of P(G ) with
product topology. These statements are not super obvious a priori!

All I want you to remember: Locally indicable ⇒ left-orderable but
no explicit left-order is given.



Applications of local indicability

Free groups are left-orderable.

Proof:

Nielsen–Schreier theorem: Every subgroup of a free group is free.

In particular, every finitely generated subgroup of a free group is free.

For each f.g. subgroup, get homomorphism onto Z by sending every
generator to 1.

F is locally indicable, thus left-orderable.

Explicit orders can be given by the Magnus embedding and an action on a
tree (Dicks and Z. Sunic, 2020). There are uncountably many left-orders.

RAAGs are poly-free, where the length of the subnormal series is
bounded by the chromatic number of the defining graph (S. Hermiller
and Z. Sunic, 2007). Using induction and extension lemma we get
RAAGs are left-orderable.



Surface groups

Surface groups are left-orderable apart from the fundamental group of
the projective plane.
The proof is long and uses a lot of algebraic topology which I will not
explain due to lack of time. It comes down to the following.

Closed surfaces (except from T 2, P2,P2#P2) are a cover of
3P2 = P2#P2#P2.

If S is such a closed surface, then π1(S) ≤ π1(3P2)

left-orders are closed under subgroups, so we restrict our attention
to π1(3P2).

Use the fact that 3P2 is homeomorphic to P2#T 2 to get a short
exact sequence

1→ π1(3̃P2)→ π1(3P2)→ Z2 → 1

where π1(3̃P2) is free and thus left-orderable.

Use the extension lemma to obtain that π1(3P2) is left-orderable.



Surface groups

So far: we have vaguely shown that any closed surface which is not
P2,P2#P2 and T 2 is left-orderable by reducing it to π1(3P2) is
left-orderable.

The rest of the groups that are not covered are π1(P2) = Z/2Z which we
know not to be left-orderable, π1(P2#P2) = K2 and π1(T 2) = Z2 which
we know to be left-orderable. (We will give a postive cone for K2 later).



Dynamic realization of left-orderable groups

Claim: For a countable group G , G is left-orderable iff it is isomorphic
to a subgroup of Homeo+(R).

Proof sketch:
(⇒) Let t : G → R be an injective map such that
g ≺ h =⇒ t(g) < t(h). Define action of G on t(G ) equivariantly
g(t(h)) = t(gh). Extend action on R− t(G ) by defining the action
affinely: if x ∈ (t(g), t(h)) then x = at(g) + (1− a)t(h) and apply
action linearly.

(⇐) Order group elements by their action on a countable dense set.
f ≺ g ⇐⇒ f (xi ) < g(xi ) for xi of minimal index in the countable dense
set such that f (xi ) 6= g(xi ).



End of basics.

Recommended reference: Ordered Groups and Topology by Adam
Clay and Dale Rolfsen.

Any questions?



Part 2: Introduction to our research



Remark on finite generation

Recall that a positive cone for Z2 was given by two finitely generated
positive cones, PA = 〈a〉+, PB = 〈b〉+ and PAB ∪ PB is a positive cone
for Z2.  
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In some sense it’s as easy to know if something is positive in Z2 as it was
for Z, but this positive cone for Z2 is not finitely generated.



Remark on finite generation

In fact, Z2 also inherits an isomorphic positive cone as a subgroup of
index two in K2 = 〈a, b | a−1bab = 1〉 with positive cone 〈a, b〉+.

 

7 7 7
u r v n v r v
v n u u

7
r v r v r wV n u

V u n v
v r v b a

Oia
v n e a vv v n v

3

u v I I n v
v v n u

7 7

Again, the inherited positive cone for Z2 is not finitely generated.



Remark on finite generation

Being finitely generated as a positive cone

is not closed under taking extensions.

is not closed under taking finite index subgroups.

Takeaway: being finitely generated is not a very good property to
describe how hard it is to determine whether something is in a positive
cone.

Research motivation: have a good way to describe positive cone
complexity.

Next: Let’s prove that Z2 has no finitely generated positive cone.



Topology of the Space of Left-Orders

Take LO(G ) to be the spaces of left orders G
(Recall: a left-order is equivalent to a positive cone, so points in that space are

positive cones).

All P ∈ LO(G ) are subsets of G − {1G},
=⇒ LO(G ) is a subset of the power set of G − {1G}.

LO(G ) inherit the natural product topology on
⊆ {+1,−1}G−{1} ' P(G − {1G}).

Every element P has |G | − 1 coordinates indexed by g 6= 1G .{
πg (P) = +1, g ∈ P

πg (P) = −1, g ∈ P−1

Ex: LO(Z) has two points, name them P and P ′. They are defined by
π1(P) = 1 or π−1(P ′) = 1; whether you choose 1 or −1 to be in your
positive cone.



Topology of Space of Positive Cones

We say that two positives cones are close in that space if they agree on
large balls of group elements based at 1G .
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The point: If P is finitely generated then for a sufficiently large ball Bn,
P will be the only positive cone which agrees with itself on Bn because
Bn contains all the generators, and any semigroup containing all these
generators take up about half of G , so P is an isolated point.

Ex: in Z, P, P ′ are isolated because they are generated by 1 and −1, and
can’t agree with each other on a single element.

P finitely generated =⇒ P is an isolated point .



Positive cones of Z2

Claim: We will show that LO(Z2) has no isolated points, and thus no
finitely generated positive cones.

The positive cones in Z2 are defined by the half-spaces and a choice of
orientations. This half-space represents a point in LO(Z2).
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The half-space is clearly closed under semi-group operation (adding
two vectors together).

The half-space clearly partitions Z2 appropriatedly.



Neighbourhoods of LO(Z2)

Claim: We will show that LO(Z2) has no isolated points, and thus no
finitely generated positive cones.

A neighbourhood in LO(Z2) is the set of all positive cones agreeing on a
finite ball, but which do not necessarily coincide outside of the ball.
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You can draw two different such slopes for any finite ball!
=⇒ LO(Z2) has no isolated points.

=⇒ Z2 has no finitely generated positive cones!



Research motivation

What we just saw: That Z2 has no finitely generated positive cones.
But

Z2 is an extension of two groups with finitely generated positive
cones.

Z2 is a subgroup of finite index in a group which has a finitely
generated positive cone. (In fact, the Klein Bottle group has only
finitely generated positive cones).

Therefore, finite generation doesn’t capture positive cone complexity well.

Research motivation: have a good way to describe positive cone
complexity.

We study positive cones and regular languages.



Positive cone language

Let G = 〈X | R〉 be finitely generated.

Let X ∗ :=
⋃∞

n=0 X
n.

A language is a subset of L ⊂ X ∗, and elements of L are called words.

We say that L evaluates to P if there is an evaluation map π : X ∗ → G
such that π(L) = P. If P is a positive cone, we call L a positive cone
language.



Regular languages

Def: A regular language is a language accepted by a finite state
automaton.

Finite state automata capture the idea of needing finite memory.

Ex 1: The language accepted by this automaton is the set of binary
strings with an odd number of 0’s.

 

At g put
even odd
0 s y A O's

0

a b

ai b

az
bib

2b

Ex of accepted strings: 10, 000, 01. Non-examples: ε, 1, 00.

Regular languages are the simplest languages in a classification of
languages called the Chomsky hierarchy.



Positive cone of Z2 as a regular language

Ex: Z2 = A× B.
PA = 〈a〉+, B = 〈b〉,
PZ2 = PAB ∪ PB = {anbm | n > 0} ∪ {bm | m > 0}.
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Overview of research niche

Closure properties of regular positive cones

Regular positive cones are closed under extensions. Proof is really
easy!

Regular positive cones are closed under finite index subgroups. (Su,
2020).

Having a regular positive cone is independent of generating sets,
assuming the sets are finite. (Known fact and easy to proof).

However, it is positive cone dependent. B(1, q) where q > 1 has
both regular and non-regular positive cones (Antoĺın, C. Rivas, and
Su, upcoming).



Overview of research niche II

Geometric property of regular positive cones
Def: A set is P ⊆ G is coarsely connected if it is connected in the Cayley
graph up to some R-neighbourhood, for R ≥ 0.

Regular positive cone P =⇒ the set P is coarsely connected
(Alonso, Antolin, and C. Rivas, 2020).

Applications:

Non-abelian free groups have no coarsely connected positive cones
and hyperbolic groups with coarsely connected positive cones have
to be very distorted in the sense of not being connected by
quasi-geodesics (Alonso, Antolin, and C. Rivas, 2020).

Relatedly, free products have no regular positive cones
(S. M. Hermiller and Zoran Sunic, 2017) and acylindrically
hyperbolic groups have no regular quasi-geodesic positive cones (Su,
2020).



Overview of research niche

Crossing left-orderable groups with Z :
Something inherent about positive cones change when you cross groups
with Z.

Let A,B be left-orderable. A ∗ B has no isolated orders (Deroin,
Navas, and C. Rivas, 2014). In particular F2 has no isolated orders.
F2 × Z has both isolated and non-isolated orders (Mann and
Cristobal Rivas, 2018).
Moreover, F2 × Z has a finitely generated positive cone, which is
part of a new infinite family of groups with k-finitely generated
positive cones for any k ≥ 3 (Su, 2020). Whether such a family
existed was a question left open by Navas, 2011.
In general, free products of groups with regular positive cones A ∗ B
have a one-counter order (Dicks and Z. Sunic, 2020) but no regular
order (S. M. Hermiller and Zoran Sunic, 2017).
(A ∗ B)× Z has a regular order (Antoĺın, C. Rivas, and Su,
upcoming).



Advertisement

If any of this has intrigued you:

I am giving a less introductory talk at Queen’s University Nov 26,
2pm EST (7pm UK time?) on recent results.
https://www.queensu.ca/mathstat/seminars/dynamics

A past talk on my first paper is available in video format on my
website homeowmorphism.com/
There’s many details and pictures; the talk is fairly accessible!

I post recordings of my talk on my websites in general, including
this one and the upcoming one.

I may post more details I skipped over for the sake of time, like
really proving that surface groups minus the projective plane are
left-orderable. I learned a lot myself preparing this talk :).
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