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Left-orderable groups

Def: a group G is left-orderable if there exists a total order < on the
elements of G which is invariant under left-multiplication:

g < h ⇐⇒ fg < fh, ∀g , h, f ∈ G .

Why study left-orderable groups:

Used in proof of Hanna-Neumann conjecture. Let H and K be
non-trivial free groups. Then
rk(H ∩ K )− 1 ≤ (rk(H)− 1)(rk(K )− 1).

Link with dynamics. G is left-orderable if and only if there is a map
from G to the set of orientation-preserving homeomorphisms on a
totally ordered space (if G is countable, the space is R).



Goal

Goal of PhD (roughly speaking): Given a group which is
left-orderable, can you come up with explicit left-orders that are
optimally easy to compute?



Goal

More formally: The goal is to classify left-orders of groups with respect
to some minimal measure of computational complexity, called the
Chomsky hierarchy. We will be applying the measure to formal language
representations of positive cones.
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Good news: you don’t have to know what any of this means! :)



How to define complexity measures on left-orders

Positive cones?! Formal language representations? I thought we were
talking about orders!

Question: How do we put a formal language (or measure of
computational complexity) on a left-order?

Answer: We will use languages (set of words) which represent positive
cones to classify the complexity of left-orders. Positive cones are subsets
of your left-orderable groups, and defining a positive cone is the same as
defining a left order!

The goal is to be able to read a class of words (for example, reduced
words) and decide whether that word is in your positive cone or not.



Positive cones

Roughly speaking, a positive cone is trying to capture the notion of
additive positivity.

P ⊂ G is a positive cone for G if

PP ⊆ P (closed under semigroup operation),

G = P t P−1 t {1G} (trichotomy property).

Ex: (Z,+) admits a positive cone. Z/nZ (or any group with torsion)
does not.

 
76hr71 1 O

7617 X n a1

2 I 0 I 2 3 z
ng

Ept e p

Admitting a left-order and admitting a positive cone are equivalent.



Equivalence with left-orderability

Def: a group G is left-orderable if there exists a total order < such that
for all elements g , h, f ∈ G ,

g < h ⇐⇒ fg < fh.

Claim: G admits a left-order iff it admits a positive cone.
( =⇒ ) The left-order < defines a positive cone

P< = {g ∈ G | 1 < g}.

(⇐= ) The positive cone P defines a left-order <P

g <P h ⇐⇒ g−1h ∈ P.

Back to ex: (Z,+) admits left-order · · · < −1 < 0 < 1 < 2 < . . .
which is can be defined by positive cone: x < y ⇐⇒ −x + y > 0.



Toy Example: K2 and Z2

Take the Klein bottle group given by K2 = 〈a, b : a−1bab = 1〉.
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Fig: Cayley graph of K2.



Toy Example: K2 and Z2

K2 has a positive cone defined by P = 〈a, b〉+, represented by green dots.
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Clearly, P is a semi-group partitioning K2 into P t P−1 t {1}.



Toy Example: K2 and Z2

K2 has index two subgroup Z2 = 〈a2, b〉, represented by grey dots. The
relation is represented by highlighted part.
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What happens when we put the two pictures together?



Toy Example: K2 and Z2

P ∩ Z2 is a positive cone for Z2, represented by dark green dots.
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This is non-specific to the example. If H ⊆ G and P is a positive cone
for G , then P ∩ H is a positive cone for H.



Toy Example: K2 and Z2

Reminder: The group K2 had a nice description of the positive cone P
as a finitely generated semigroup.

Question: Can we also describe P ∩ Z2 in an equally nice way (as
finitely generated semigroup)?

Answer: No (surprisingly?!)

Next: Let’s get some intuition for why Z2 does not admit any finitely
generated positive cones.



Topology of the Space of Left-Orders

Take LO(G ) to be the spaces of left orders G
(Recall: a left-order is equivalent to a positive cone).

All P ∈ LO(G ) are subsets of G − {1G},
=⇒ LO(G ) is a subset of the power set of G − {1G}.

LO(G ) inherit the natural product topology on
⊆ {+1,−1}G−{1} ' P(G − {1G}).

Every element P has |G | − 1 coordinates indexed by g 6= 1G .{
πg (P) = +1, g ∈ P

πg (P) = −1, g ∈ P−1



Topology of Space of Positive Cones

The topology is metrizable for countable groups (in this talk, we only
care about finitely generated groups which are countable).

Metric: If G is countable, then G admits a complete exhaustion by
finite sets {1G} = B0 ⊂ B1 ⊂ . . . . We can define the distance between
two points P,P ′ ∈ LO(G ) by

d(P,P ′) = 2−n,

where n is the maximal non-negative integer such that P and P ′ coincide
on Bn. The more elements P,P ′ have in common the closer they are.
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Fig: here P,P ′ coincide at B2, but not outside, so their distance is 1/4.



Topology of Space of Positive Cones

Two positives cones are close in that space if they agree on large balls of
group elements based at 1G .

Point: If P is finitely generated then for a sufficiently large ball Bn, P
will be the only positive cone which agrees with itself on Bn because Bn

contains all the generators, and any semigroup containing all these
generators take up about half of G , so P is an isolated point.

P finitely generated =⇒ P is an isolated point .

Next: We will show that LO(Z2) has no isolated points, and thus no
finitely generated positive cones.



Positive cones of Z2

The positive cones in Z2 are defined by the half-spaces and a choice of
orientations. This half-space represents a point in LO(Z2).
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The half-space is clearly closed under semi-group operation (adding
two vectors together).
The half-space clearly partitions Z2 appropriatedly.



Neighbourhoods of LO(Z2)

A neighbourhood in LO(Z2) is the set of all positive cones agreeing on a
finite ball, but which do not necessarily coincide outside of the ball.
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You can draw two different such slopes for any neighbourhood of LO(Z2).
=⇒ LO(Z2) has no isolated points.

=⇒ Z2 has no finitely generated positive cones!



Result 1: Passing to Finite Index Subgroups

Review:

We had K2, a group with a finitely generated positive cone.

We had Z2 ≤ K2, a subgroup of index 2 with no finitely generated
positive cone.

Takeaway: Being finitely generated as a positive cone is not passed

down to finite index subgroups!

Question: What property of positive cones pass to finite index
subgroups?



Result 1: Passing to Finite Index Subgroups

Theorem 1 [? ]

If G is a finitely generated group with positive cone P and regular
language representing P and H is a finite index subgroup of G , then H
has a regular language representing P ∩ H.

By the toy example with Z2 ≤ K2, this is the minimal complexity that is
passed down to finite index. (finitely generated =⇒ regular)
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Next: But what are regular languages?



Regular languages

Def: A regular language is a language accepted by a finite state
automaton.

Finite state automata capture the idea of needing finite memory.

Ex 1: The language accepted by this automaton is the set of binary
strings with an odd number of 0’s.
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Ex of accepted strings: 10, 000, 01. Non-examples: ε, 1, 00.



Regular languages

Instructions to obtain accepted language:
The accepted language is a subset of all the words you may form using
the automaton.

1 Starting with an empty word, start at the state which has an arrow
from nothing pointing to it (start state). 

0 start state

x ex

X

Foo
final state

2 Read the arrows labeled by a letter in the alphabet, and add this
letter to the word you are forming.

 

0 start state

x ex

X

Foo
final state

3 The language accepted is the set of words spelled by the arrows
such that the last arrow leads to a final state.

 

0 start state

X

F final state



Regular languages

Ex 2: The language accepted by the automaton below is the entire
semigroup 〈a, b〉+ of positive words in a and b. This evaluates to a
positive cone P for K2. (All finitely generated positive cones are regular
by the same reasoning.)
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The language accepted by the automaton below is
{a2nbm | n ∈ Z+,m ∈ Z} ∪ {bm | m ∈ Z+}. This evaluates to P ∩ Z2.
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Point: This is a concrete example of regular positive cones passing to
finite index subgroups.



Aside: words vs group elements

We want to show the following.

Theorem 1

For finitely generated groups, regular positive cones pass to finite index
subgroups.

Obvious but doesn’t work:
(regular positive cone language) ∩ {all words generators of subgroup}
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Ex: For K2, P has no b−1 but a2b−1 is accepted for P ∩ Z2.
We are interested in inheriting the positive cone at the language level!



Aside: words vs group elements

Important distinction: It is important to distinguish between a word
and the group element it represents (it’s π-image). For example,
π(b−1b) = π(bb−1) = 1G , but b−1b 6= bb−1 at the level of words. 
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Fig: different languages (sets of words) which evaluates to the identity.
WP stands for Word Problem, and WP is a superset of all such
languages. Figuring out WP for various groups is a famous
computational problem in geometric group theory.



Aside: words vs group elements

Similarly, given a positive cone, there are many languages which surjects
to it. We call these languages positive cone languages.
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Link to co-word problem: if a word is in a positive cone language (or
inverse positive cone language) then it is not equal to the identity.



Aside: words vs group elements

Just like in the word problem, the complexity of a positive cone language
can tell us about its geometry!

Def: A subset P ⊆ G is coarsely connected if there is an R ≥ 0 such
the R-neighborhood of P is connected.

Link to geometry: regularity of a positive cone language L =⇒ the
positive cone is coarsely connected [AAR20].



Back to problem

For a subgroup of finite index H, we are interested in a language which
surjects to a positive cone for H ∩ P, constructed from a regular
language which surjects to P.

How do we construct such a language for H ∩ P?

Idea: how about we design an automaton which ’keeps up with’ the
arrows of the positive cone automaton for the group?



Fellow-travel

Speaking of keeping up with... Have you heard of Keeping Up With
the Kardashians fellow-travel?

Let ū := π(u), where u corresponds to a path in the Cayley graph and ū
the group element (end vertex of path). 
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Def: Let u = x1 . . . xn and v = y1 . . . yn. Let ui = x1 . . . xi , vi = y1 . . . yi
be the ith prefixes. We say that u and v synchronously M-fellow-travel if
d(ūi , v̄i ) ≤ M for 1 ≤ i ≤ n and (for this talk) ū = v̄ .



Fellow-travel

Fact: The language of synchronously M-fellow-travelling words is
regular.
Key: use finite memory to remember the difference between words.

States: all group elements which are in a ball of radius M centered
at identity, plus fail state.

Transitions: going from one difference to another. If the pair of
paths goes from (u, v) to (ux , vy) then the difference goes from
ū−1v̄ to x−1ū−1v̄ y = (ūx̄)−1(v̄ ȳ). If (ūx̄)−1(v̄ ȳ) is not in ball of
radius M, then transition to fail state.

Start state: the identity. Final state: the identity.
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Proof idea of regularity passing to finite index

Steps of proof : Assume G = 〈X | S〉 finitely generated.

1 Let H be a finite index subgroup. Then H is L-convex for any
language L ⊂ X ∗, meaning that for any language L, the path
induced by a word with endpoints in H is point-wise ≤ R away from
H. (Similar to quasi-convexity but w.r.t. L). 
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Illustrated: Let h1, . . . , hn be coset representatives of H. Then every
element of G is at distance ≤ maxni=1 |hi | of H. Set
R := maxni=1 |hi |.



Proof idea of regularity passing to finite index

2 H L-convex =⇒ any word u ∈ L such that ū ∈ H can be finitely
generated by

Y = {w ∈ X ∗ : w̄ ∈ H, |w | ≤ 2R + 1}.
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wi is a geodesic connecting the two projected endpoints of xi , and
w̄i ∈ H because its endpoints are in H.

Note: Y ∗ 6⊂ L =⇒ need more restrictions.



Proof idea of regularity passing to finite index

3 Observation: Wait, top and bottom words almost fellow-travel if
the top word waits for the bottom =⇒ we call this asynchronously
fellow-travelling. The parameter here if (3R + 1) by triangle
inequality.
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Proof idea of regularity passing to finite index
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Proposition [Su2019]:

The language of pairs of words which (3R + 1)-asynchronously
fellow-travel is regular (by adding padding).

We can set the top language to be a fixed regular positive language
L and the language of pairs of words will stay regular (Prop. calc).

The bottom language by itself is also regular (Prop. calc).

Call the obtained bottom language L̃. Since π(L) = P, π(L̃) = P.
=⇒ we just have to add H-restriction back to bottom language!



Proof idea of regularity passing to finite index

Recall: Y = {w ∈ X ∗ : w̄ ∈ H, |w | ≤ 2R + 1}, but Y ∗ had
potentially ’too many words’ (words which do not evaluate necessarily
evaluate to P).

 

4 =⇒ L̃ ∩ Y ∗ is the desired language.

Every element in P ∩ H has a representative in L̃ ∩ Y ∗ by
construction.
Every word L̃ ∩ Y ∗ corresponds to an element of P ∩ H because
π(L̃) = P and π(Y ∗) ⊆ H.



You’ve worked hard!

Next: just one application on this.

Now is a good time to ask questions!



Application of regularity passing to finite index

Observation: We didn’t use finite index directly to show regularity
passing to finite index subgroups - we used L-convexity. Here’s an
application of the proof of Theorem 1.

Application 1 [? ]

A quasi-geodesic positive cone language of a finitely generated
acylindrically hyperbolic group cannot be regular.

Facts:

1 F2 is a subgroup of any f.g. acylindrically hyperbolic group. F2
embeds in a ’nice’ way with quasi-geodesics of G (is hyperbolically
embedded [DGO17]). =⇒ [Sis16] F2 is L-convex in G for any
quasi-geodesic language L.

2 F2 cannot have a regular positive cone [HS17].

Proof of Theorem 1 implies: if G has a regular quasi-geodesic positive
cone =⇒ F2 has a regular positive cone. Contradiction.



We did this!

Let’s take a deep breath.

...

...

...

I ♥ f.g. positive cones. They are easy.

Let’s only talk about them from now on.

PS: if you got lost (as I do), this is a good time to start listening again.



Result 2: Constructing an infinite family of groups with
finitely generated positive cones

Problem: we don’t have many examples of groups with f.g. pos. cones!

Theorem [Nav11]

There is an infinite family of groups with 2-generated positive cones,
Γn = 〈a, b | banb = a〉 with positive cones Pn = 〈a, b〉+ for n ∈ N.

Ex: Γ1 = K2, the Klein bottle group from before!



Result 2: Constructing an infinite family of groups with
finitely generated positive cones

Navas’ question: For every k ≥ 3, find an infinite family of groups
which admit a positive cone that is k-generated.

k-generated: A positive cones which can be generated by k elements
but cannot be generated by less than k elements.

We answer Navas’ question completely.

Theorem 2 [? ]

For every integer m ≥ 2, and integer n ≥ 2 of the form n = m − 1 + mt
for some odd integer t, there is a subgroup of index m in Γn which
admits a positive cone of rank m + 1.



Result 2: Constructing an infinite family of groups with
finitely generated positive cones

Strategy: Do a similar ’projecting to subgroup’ strategy that we did for
Theorem 1, but the strategy becomes easier in this case! It is a sort of
Reidemeister-Schreier method type argument.

For every m, pick n such that

φ : Γn → Z/mZ,

a 7→ 1, b 7→ 1

is a homomorphism. By the relation banb = a, this means that n + 1 = 0
mod m
=⇒ n = m − 1 + mt for integer t.



Result 2: Constructing an infinite family of groups with
finitely generated positive cones
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Since b 7→ 1 ∈ Z/mZ, this means that

T = {b0, b−1, . . . , b−(m−1)}

is a transversal (set of coset representatives) for ker φ.

For the right choice of b−k ∈ T ,

b−kabk−1 and b−kbbk−1 ∈ ker φ.



Result 2: Constructing an infinite family of groups with
finitely generated positive cones

The magic:

By the relation in Γn, b−kabk−1 ∈ P for all k ≥ 1 (in the proof of

Theorem 1, our generators did not necessarily project to positive cone

elements).

You get finitely many b−kabk−1’s. Moreover, b−kbbk−1 is either bm

or 1.

As a result,
Y = {b−sabs−1}m−1s=1 ∪ {b

m}

generates all of ker φ ∩ P = 〈Y 〉+.

Recap: We’ve shown that the rank of P is ≤ m + 1 since |Y | = m + 1.
Next, we need to show that the rank is equal to m + 1. We will use the
Reidemeister-Schreier method.



Result 2: Constructing an infinite family of groups with
finitely generated positive cones

The Reidemeister-Schreier method [LS01] - it’s an algorithm:
Input: a finite presentation for G and a finite index subgroup H with a
choice of transversal.

Output: a finite presentation for H.

Point: Y coincides with the finite generating set outputted for the
Reidemeister Schreier method on Γn with finite index subgroup ker φ and
choice of transversal T = {b0, . . . , b−(m−1)}.

Proving rank of P ∩ H is m + 1:

Continue using Reidemeister-Schreier to get relations for ker φ, then
abelianize presentation.

Using Z-module algebra, abelianization has rank m + 1 when
n = m − 1 + mt for t odd.

m+ 1 = |Y | ≥ rk(P ∩ker φ) ≥ rk(ker φ) ≥ rk(Ab ker φ) = m+ 1.



I’m almost done now.

...

...

...

One last application.



Application of Result 2: F2 × Z

Let’s look at F2 × Z - why do we care?

Hermiller and Sunic found in 2017 that F2 does not admit a regular
positive cone [HS17].

F2 × Z was found to have isolated points in its space of left-orders
by Mann and Rivas [MR18].

Recall: finitely generated pos. cone =⇒ isolated points in space of
left-orders.

Question: Is the converse true in this case?

F2 × Z is a subgroup of index 6 in Γ2 =⇒ it has a regular positive
cone...promising! (This has been prior discovered by C. Rivas in
2019).

Application 2 [? ]

F2 × Z has a finitely generated positive cone.



Application of Result 2: F2 × Z

Application 2 [? ]

F2 × Z has a finitely generated positive cone.

Fact: F2 × Z ∼= ker φ′(Γ2) where
φ′ : Γ2 → Z/6Z, φ′(a) = 4, φ′(b) = 1.

In general,

Y = {b−sabs+(m−φ′(a))}φ
′(a)−1

s=0 ∪ {b−sabs−φ′(a)}m−1s=φ′(a) ∪ {b
m}.

=⇒ The rank of P ∩ (F2 × Z) is at most 7 (actually can get ≤ 6).

Point: In this case, n and m are not as in Theorem 2, so we can’t get
an exact rank on the positive cone, but we can still say it’s finitely
generated!



Thank you!
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