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Left-orderable groups

Def: a group G is left-orderable if there exists a total order < on the
elements of G which is invariant under left-multiplication:

g<h << fg<fh, Vg, h, f e G.



There is a large class of groups which are left-orderable. All surface
groups except the one for the projective plane are left-orderable.
RAAGs and virtually poly-Z are left-orderable.

Link with dynamics. For a countable group G, G is left-orderable iff
it is isomorphic to a subgroup of the set of orientation-preserving
homeomorphisms on R.

Used by Mineyev in a proof of the Hanna-Neumann conjecture. Let
H and K be non-trivial free groups. Then

rk(HN K) —1 < (rk(H) — 1)(rk(K) — 1).

Related to zero divisor conjecture. Let R be a ring without zero
divisors and G be torsion free. The conjecture says that the group
ring RG has no zero divisors.

What is known: if G is left-orderable, then RG has no zero divisors.



First example

Def: a group G is left-orderable if there exists a total order < on the
elements of G which is invariant under left-multiplication:

g < h < fg < fh, Vg, h feG.

(Z,+) has a natural left-order given by
<1012 <.

The order is clearly invariant under addition.
The definition of left-order is completely symmetric and

<1l -1 2<.

is another left-order.



Equivalent notion: positive cone

We can look at left-orders in terms of sets called positive cones. Roughly
speaking, a positive cone is trying to capture the notion of additive
positivity in your group.

P C G is a positive cone for G if
m PP C P (closed under semigroup operation),
m G=PUP1U{lg} (trichotomy property).

Ex: (Z,+) admits a positive cone. Z/nZ does not - no group with
torsion has a positive cone.
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Suppose a group with torsion has a positive cone. Then is some element
g such that g” = 1. Then wlog if g € P,g" =1 € P. Contradiction.



Equivalence of positive cone with left-order

Ex: (continued) (Z,+) admits this natural left-order
< -l<0<Ic2<..
The left order is equivalent to defining positive elements
P={z>0|zeZ}

in the sense that
x<y <= —x+y>0.

In general, if you have a left order, then P = {g € G | g > 1}. Moreover,
defining a positive cone also defines an order by g < h <= g~ lhe P.



Closure Property 1: subgroups

If (G, <) is a left-orderable group and H < G, then (H, <) is
left-orderable.

Clearly, if g < h < fg < fhforall g, h,f € G, this is also true if
g,h,f €H.

ex: 272 <Z.
e 2<0<2<4 <.



Closure Property 2: extensions

Let's start with an example.
We know that Z is left-orderable. Z2 is also left-orderable viewed as
7 X 7.
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A positive cone is for Z? is given by
P={a"b"|n>0Vvn=0m>0}.

This is a lexicographic order with leading factor A, where A = (a).
Note that P = P4B U Pg, where P4, Pg are positive cones of Z.



Closure 2: extensions

This idea of composing positive cones generalizes to extensions.
Suppose you have 1 -+ N — G — Q — 1, with Py and Pg.

Then PN U Py is a positive cone for G since:

Every element can be written as g =qgn, g € Q,n € N

Trichotomy: g is such that g € Pg,q € P(Sl or g =1 and similarly for
n, so G = (PoN U Py) L (PoNU Py)~tU{1}.

Semigroup closure: if g, h € P such that g = gn, h = pm then

gh = qnpm = qp(p~tnp)m = gp(n’m) where n’ € N. Either q or p are
in Pg, in which case gh € PN C P, or g = p =1, in which case

n' = p~tnp = n and then both n,m € Py so gh € Py C P. O

We call this order a lexicographic order with leading factor Q.



End of basics. Any questions?



Let's get to research!



Remark on finite generation

A positive cone for Z? is given by two finitely generated positive cones,
P = (a)*, Pg = (b)T such that P4B U Pg is a positive cone for Z?.
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In some sense it's as easy to know if something is positive in Z? as it was
for Z.
This positive cone for Z?2 is not finitely generated (this is just a fact).



Remark on finite generation |l

In fact, Z? also inherits an isomorphic positive cone as a subgroup of
index two in Ky = (a, b | a~tbab = 1) with positive cone (a, b)™, where
72 = (%, b).
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Again, the inherited positive cone for Z? is not finitely generated.



Remark on finite generation Il

Fact: Z? has no finitely generated positive cones. This is given by the
topological fact that the space of left orders of Z2, LO(Z?), has no
isolated points.

Being finitely generated as a positive cone
m is not closed under taking extensions.

m is not closed under taking finite index subgroups.

Takeaway: being finitely generated is not a very good property to
describe how hard it is to determine whether something is in a positive
cone.

Research motivation: have a good way to describe positive cone
complexity.
We study positive cones and regular languages.



Positive cone language

Let G = (X | R) be finitely generated.
Let X* :=J2o X"
A language is a subset of L C X*, and elements of L are called words.

We say that L evaluates to P if there is an evaluation map 7 : X* — G
such that w(L) = P. If P is a positive cone, we call L a positive cone
language.

If P has a language L which evaluates to it and L is regular, L is called a
regular positive cone language and P is called a regular positive cone.



Regular languages

Def: A regular language is a language accepted by a finite state
automaton.

Finite state automata capture the idea of needing finite memory.

Ex: This automaton accepts the language of binary strings with an odd

number of O’s.
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Ex of accepted strings: 10,000,01. Non-examples: ¢,1,00.

Regular languages are the simplest languages in a classification of
languages called the Chomsky hierarchy.



Positive cone of Z? as a regular language

Ex: Z2 = A x B.
Pa=(a)*, B=(b),
Pz2 = PABUPg = {a"b™ | n>0}U{b™ | m> 0}.
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Important: When L represents P, we only need that for every positive
element g € P, there exists at least one word w of L such that

m(w) = g.

Ex: (Z,+) = (a) admits positive cone language
L={(a)T:=(a" | n>0). a®a~'is not in L, even though it represents a
positive element.

This is very different from the word problem which is about the pre-image
language of the identity. Yet, positive cone languages are related to the
word problem since if w € L, then w(w) # 1 and therefore w ¢ WP.

Lemma (Antolin, C. Rivas, and Su, upcoming): If G is such that
7~ 1(P) its pre-image positive cone language is regular, then G is trivial.



Overview of research niche

Closure properties of regular positive cones

m Regular positive cones are closed under extensions. (Proof is really
easy!)

m Regular positive cones are closed under finite index subgroups. (Su,
2020).

m Having a regular positive cone is independent of generating sets,
assuming the sets are finite. (Known fact and easy to proof).

m (*) However, regularity is positive cone dependent. B(1, q) where
g > 1 has both regular and non-regular positive cones (Antolin,
C. Rivas, and Su, upcoming).



Geometric property of regular positive cones
Def: A setis P C G is coarsely connected if it is connected in the Cayley
graph up to some R-neighbourhood, for R > 0.

m (*) Regular positive cone P = the set P is coarsely connected
(Alonso, Antolin, and C. Rivas, 2020).

Applications:

m Non-abelian free groups have no coarsely connected positive cones
and hyperbolic groups with coarsely connected positive cones have
to be very distorted in the sense of not being connected by
quasi-geodesics (Alonso, Antolin, and C. Rivas, 2020).

m Relatedly, free products have no regular positive cones (Hermiller
and Zoran Sunic, 2017) and acylindrically hyperbolic groups have no
regular quasi-geodesic positive cones (Su, 2020).



Crossing left-orderable groups with Z :
Something inherent about positive cones change when you cross groups
with Z.

Let A, B be left-orderable. A * B has no isolated orders (Deroin,
Navas, and C. Rivas, 2014). In particular F, has no isolated orders.
F> x 7Z has both isolated and non-isolated orders (Mann and
Cristobal Rivas, 2018).

Moreover, F» x Z has a finitely generated positive cone, which is
part of a new infinite family of groups with k-finitely generated
positive cones for any k > 3 (Su, 2020). Whether such a family
existed was a question left open by Navas, 2011.

In general, free products of groups with regular positive cones A x B
have a one-counter order (Dicks and Z. Sunic, 2020) but no regular
order (Hermiller and Zoran Sunic, 2017).

(*) (Ax B) x Z has a regular order (Antolin, C. Rivas, and Su,
upcoming).



Geometric interpretation of regularity

Thm (Alonso, Antolin, and C. Rivas, 2020): P is regular = P'is
coarsely connected.

Proof: Let L be a regular language such that 7(L) = P. We will show
that there exists an R such that for every w € L, there exists a path
p=pi...pnfrom 1 to m(w) such that the p;'s are from P to P except
for p1 which starts at 1 and |p;| < R.

mlet w=xy...xp and w; = x1...x;. For every prefix w;, there exists
u; such that wju; € L and |uj| < |S], the number of states of L.
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Geometric interpretation of regularity I

Thm (Alonso, Antolin, and C. Rivas, 2020): P is regular = P'is
coarsely connected.

m Then p; = m(u; ' xu;) is a path of length < 2|S| + 1 from P to P,
(except for p; which is 1 to P), and w(p1 ... pn) = m(w).
wi XL+
Llu,_

’P

wi XL Wi —a-
~— ey =
N
e~ o~ ——o
< {3\ a =13}

m Set R =2|S|+ 1.
m —> P is R-connected.



Regularity is positive cone dependent

Thm (Antolin, C. Rivas, and Su, upcoming):
B(1,q) = (a,b | aba~! = b? where g > 1 has both regular and
non-regular positive cones.

Non-regular positive cone:

m There is a well-known isomorphism B(1, q) = Z[1/q] x Z, where a
acts by conjugation on b such that k/q™ € Z[1/q] corresponds to
a mbka™m,

m This does match the relation since aba=! = 1/g~! and b9 = q.

m Every element g € B(1, g) can be written in normal form
g = a"(a—mbkam).
= we have a lexicographic order given by PzZ[1/q] U Pz /q as
we saw by our extension lemma.



Regularity is positive cone dependent I

= we have a lexicographic order given by PzZ[1/q] U Pz[1/q].

Figure: Cayley graph for B(1,2) where the blue arrows correspond to a.
The positive cone is given by everything above the zero level of the tree
and part of the zero level. Because of the tree structure, this set is not
coarsely connected as branches of the same level are connected by going
down the height level, but for every R there exists two branches above
zero which are connected by going down > R levels.

Not coarsely connected = not regular.



Regularity is positive cone dependent Il

Regular positive cone for B(1,q)
m B(1,q) has an embedding p into Homeo™ (R) given by
p(a)(x) = gx, p(b)(x) = x+ 1 for x € R.
m We can check that p(aba=1)(x) = p(b9)(x) = x + q.

m Write g in normal form g = a"(a~"b*a™). We observe that
p(g)(x) =q"x + qu- We can check that this implies that p is
injective as claimed.

m Let Py :={g € B(1,q) | p(g)(0) > 0}. This defines positivity on G
except for Stab(0) since g € Py acts by translation or dilation.
Stab(0) = (a), so P = Py U (a)* defines a positive cone.

This gives us
P={a"|n>0}U{a"(a"b*a™) | k > 0}

which has a regular language representation.



Regularity is positive cone dependent Ill|

P={a"|n>0}U{a"(amb*a™ | k > 0)}

Figure from (Antolin, C. Rivas, and Su, upcoming)



Free products of groups with regular positive cones have a

one-counter positive cone

Def: A one-counter language is a language which is ‘accepted by a
finite state automaton equipped with a one-symbol stack’.

Ex: A one-counter automaton accepting the language {0"1" | n > 0}.
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It is clear that the set of one-counter languages D the set of regular
languages since one-counter automata are just regular automata with
extra properties.



Free products of groups with regular positive cones have a

one-counter positive cone I

Thm (Dicks and Z. Sunic, 2020): Free products of groups with
regular positive cones have a positive cone which is accepted by a
one-counter language.

Proof: For G = !, G;, write each element in its free product normal
form g = g1...gm with g; € Gj, ij # ij41 and g; # L.
Define a function 7 : G — Z where

7(g) = #pos syllables(g) — #neg syllables(g) + #rises(g) — #falls(g)

a positive syllable is when g; € P;;, a negative syllable is when g; € Pi_l,
a rise is when gjgj 1 is such that j; < jj11, and a fall is when j; > ij;.



Free products of groups with regular positive cones have a

one-counter positive cone |lI

7(g) = #pos syllables(g) — #neg syllables(g) + #rises(g) — #falls(g)

Properties of 7 are as follows

m 7(g) =0 <= g =1 due to normal form.

m 7 is odd on G — {1} since number of syllables + numbers of rises or
falls is odd.

m |7(gh) — (7(g) + 7(h))| <1 by case checking.

7 defines a positive cone with P := {g € G | 7(g) > 0} because

m Forallge G, 7(g) >0or7(g) <0 unless g =0.
= G=PUPU{1L

m If g, h € P, then 7(gh) = 7(g) + 7(h) + €, where e € {—1,0,1}.
Since 7(g),7(h) > 1, we get 7(gh) >2+¢> 1.
— PPCP.



Example of F, being one-counter

The one-counter complexity is given by counting 7. We give this as a
transducer.

e/t™t

Figure from Antolin, C. Rivas, and Su, upcoming.



Free products of groups with regular positive cones xZ

have a regular positive cone

Thm (Antolin, C. Rivas, and Su, upcoming) Free products of groups
with regular positive cones XZ have a regular (and thus coarsely
connected) positive cone.

There is a nice group-theoretical interpretation to one-counter.

Intuition: transfer the 7-counter onto the Z-factor.
For (g,z) € G x Z, we would like 7(g) 4+ z > 0 to define the positive
cone.

Problem: The kernel of 7 would contain more than the identity.

Fix: We use that 7 is an odd function. Let
P={(g,2) € GxZ|7'(g z) =7(g) +2z>0}.



Free products X7 have a regular positive cone Il

Thm (Antolin, C. Rivas, and Su, upcoming) Free products xZ have
a regular (and thus coarsely connected) positive cone.

Let P={ge GxZ|7(g,z)=r1(g)+2z>0}.

At the automaton level:

m We replace x/t? by xz~! to ‘compensate’ for the positivity such
that 7(g) + 2z =0.

m Before accepting a word, we force at least z to be appended at the
end, and then freely append by more z's.

m However, we cannot replace x/t by xz~ 12, so we multiply each
previous state with +1, —1, 0 which memorizes the offset value of
7'(g,z) = 7(g) + 2z from 0.
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Figure from (Antolin, C. Rivas, and Su, upcoming).



The end!



Advertisement

If you are interested to know why LO(Z?) has no finitely generated
positive cones, or in these results of my first paper

Regular positive cones are closed under finite index subgroups.

Acylindrically hyperbolic groups do not have quasi-geodesic positive
cones.

F> X Z has a finitely generated positive cone.

The existence of a new infinite family of groups which have
k-generated positive cone for any k > 3.

Go on my website homeowmorphism.com.

There's a good quality recording available of my seminar about my first
paper with detailed proof sketches.
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