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1 Introduction

My long-term research ambition is to improve the algorithmic framework for computing with
infinite groups.

During my PhD, I studied finitely generated left-orderable groups and formal languages.
A group G is left-orderable if there exists a strict total order ≺ on the elements of G which
is invariant under left-multiplication, g ≺ h ⇐⇒ fg ≺ fh, ∀g, h, f ∈ G. Equivalently, we
often encode a left-order ≺ in terms its associated positive cone P≺ := {g ∈ G | 1 ≺ g}.

The central goal of my research projects was as follows. Construct or identify groups with
a left-order ≺ for which it is “easy” to algorithmically decide for any two elements g, h whether
g ≺ h. The Word Problem is about algorithmically deducing whether g = h, or equivalently
g−1h = 1 where g−1h is encoded as a word w over the alphabet X. Analogously and using the
left-invariance of ≺, my research problem is about algorithmically deducing whether 1 ≺ g−1h
by deciding whether w evaluates to an element of P≺. Furthermore, the search space is narrowed
down by requiring that if w̄ ∈ P , then w is given in a particular “form”, or more precisely, is
accepted in a formal language. In that sense, we say that a left-order is of complexity C if its
positive cone P≺ can be represented by a formal language L which evaluates to P≺.

A formal language is a set of words over a finite alphabet which is accepted by an au-
tomaton of varying complexity. The basic families of formal languages, in increasing order of
complexity along the Chomsky hierarchy, are: regular languages (languages which are accepted
by finite state automata), context-free languages (languages which are accepted by finite state
automata equipped with a stack), context-sensitive languages (languages which are accepted by
a linear bounded automaton), and recursively enumerable languages (languages which are ac-
cepted by a Turing machine). In addition to capturing some notion of computational difficulty,
formal languages have the desirable property of being closed under AFL operations (union,
concatenation, Kleene star, intersection with regular languages, homomorphisms and inverse
homomorphisms).

In my research, I focused on positive cone languages of lower complexity, where C is either
regular or one-counter. One-counter languages are a subclass of context-free languages requiring
the accepting automaton to have only two stack symbols (including the empty stack symbol),
whereas context-free languages are accepted by automata with arbitrarily many stack symbols.
Informally it is “easy” to decide membership for a word in a regular language because it only
requires finite memory. Similarly, a one-counter language only requires keeping track of one
number.

I have completed two research projects in the last three years which has allowed me to fulfill
my research goal of finding left-orders of low complexity for a number of groups, and have
constructed tools for further progress. The first project “Formal Language Convexity in Left-
Orderable Groups” [Su20] is published in the International Journal of Algebra and Computation
(IJAC). The second project “Regular left-orders on groups” [ARS21] is a collaboration with
Yago Antoĺın and Cristóbal Rivas, which is available on arXiv. The papers deal with various
themes related to my research goal. I have presented my results along these themes below for
clarity.
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2 Research overview and results

2.1 Note on studying left-orderable groups with formal languages

When using the formal language framework to decide whether g−1h � 1, the requirement that
the word w representing g−1h is in some formal language evaluating to P≺ rather than allowing
it to be in the entire pre-image of P≺ is a natural one. For the Word Problem, Anisimov’s
theorem states that groups for which the pre-image of the evaluation map of the identity are
regular languages are of finite cardinality [Ani71]. Using Anisimov’s theorem, we obtained an
analogous conclusion for left-orderable groups.

Lemma 2.1 ([ARS21]). A finitely generated group G has a regular pre-image left-order if and
only if it is trivial.

2.2 Closure properties of positive cones under formal languages

Studying positive cones through the lens of formal languages allows us to use AFL closure to
our advantage, such as quite easily obtaining that the complexity of a positive cone language is
independent of finite generating sets, and is stable under taking extensions of two groups with
the same positive cone language complexity. I was able to show that regular positive cones are
also closed under taking wreath products and finite index subgroups. Note that the stability
of finitely generated positive cones under extension and finite index does not hold, making
regularity a better property to study. For example, Z has only two finitely generated positive
cones generated by 1 and −1 respectively, but Z2 does not have any finitely generated positive
cones. Furthermore, Z2 is a finite index subgroup of the Klein bottle group K2 = 〈a, b | baba−1

which has finitely generated positive cone 〈a, b〉+.

Theorem 2.2 ([ARS21]). Let N and Q be finitely generated groups which admits regular pos-
itive cones. Then the wreath product N oQ admits a regular positive cone.

The intuition for the proof of Theorem 2.2 is quite elementary and illustrates the power of
working with formal languages: construct a positive cone for N o Q by writing their elements
in a normal form (q1n1q

−1
1 )(q2n2q

−1
2 ) · · · (qnnmq−1

m )q with q1 �Q · · · �Q qm, then choose a
lexicographic order on the normal form. Use the structure of the normal form to construct a
regular positive cone language for N oQ using the regular positive cone languages of N and Q
and the closure properties of AFL operations.

Theorem 2.3 ([Su20]). Let G be a finitely generated group with a regular positive cone. If H
is a finite index subgroup, then H also admits a regular positive cone.

The intuition for the proof of Theorem 2.3 is as follows: every element of G is some finite
distance far away from H and thus every path in the Cayley graph of G lies some finite distance
away from H. If P is a positive cone for G which is regular, we can obtain a regular language
for H ∩ P from the one from P . More formally, we call subsets having this property language-
convex.

Definition 2.4 ([Su20]). Let L be a language over X. A subset H ⊆ G is language-convex
with respect to L if there exists an R ≥ 0 such that for each w ∈ L with π(w) ∈ H, the induced
path pw lies within distance R from H in the Cayley graph.

Proposition 2.5 ([Su20]). Let X be a finite set which is closed under formal inversion, X =
X−1. Set G = 〈X〉. Let L be a regular language, and let P = π(L) where π is the evaluation
map onto G. Let H be a subgroup of G. If H is language-convex with respect to L, then there
exists a regular language LH such that π(LH) = H ∩ P .
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The generality of Proposition 2.5 can be used to prove a result about acylindrically hyper-
bolic groups. Calegari showed in 2003 that no fundamental group of a hyperbolic manifold
has a regular geodesic positive cone [Cal03]. In 2017 Hermiller and Sunic showed that no free
products admits a regular positive cone [HS17]. Our result is a generalization of both results.

Theorem 2.6 ([Su20]). A quasi-geodesic positive cone language of a finitely generated acylin-
drically hyperbolic group cannot be regular.

However, it leaves us with the question of whether we can remove the quasi-geodesic re-
quirement.

Question 2.7. Can we find a regular (non-quasi-geodesic) positive cone for an acylindrically
hyperbolic group?

Theorem 2.6 is a consequence of fact that every acylindrically hyperbolic group admits a
hyperbolically embedded subgroup which is isomorphic to F2 [DGO17], [Osi16].

Lemma 2.8 ([Su20]). If H is a hyperbolically embedded subgroup of an acylindrically hyperbolic
group G, then H is language-convex with respect to every quasi-geodesic language L.

Therefore, if an acylindrically hyperbolic group were to have a regular quasi-geodesic positive
cone, then F2 would inherit such a positive cone contradicting [HS17].

2.3 Geometric interpretation of regularity

Theorem 2.6 is interesting from a geometrical perspective. A priori, having a regular positive
cone seems like a purely computational property. However, as with the word problem, the
complexity of a positive cone can reveal surprising information about its geometry.

Definition 2.9. A set is P ⊆ G is coarsely connected if it is connected in the Cayley graph up
to some R-neighbourhood, for R ≥ 0.

Alonso, Antoĺın, Brum and Rivas in 2020 showed that if P is a subset with a regular
language representation, then P is coarsely connected [AAR20]. Moreover, they showed that
positive cones of non-abelian free groups are not coarsely connected and that while there are
left-orderable hyperbolic groups with coarsely connected positive cones, these have to be very
‘distorted’ in the sense that for every quasi-geodesic parameter (λ, c) there are pairs of positive
cone elements which cannot be joined by such a (λ, c)-quasi-geodesic [AAR20].

In this light, the result of Hermiller and Sunic that no free product admits a regular positive
cone and Theorem 2.6 are weaker analogous statements on more general versions of free groups
and hyperbolic groups respectively.

2.4 Language complexity is positive cone dependent

Whereas the complexity of a positive cone is stable under changing finite generating sets,
extensions and taking language-convex subgroups, the complexity of a positive cone language
is dependent on the positive cone in question.

We have found that certain solvable Baumslag-Solitar groups given by presentation

BS(1, q) = 〈a, b|aba−1 = bq〉, q > 1

have both regular and non-regular left-orders [ARS21]. This is a combination of two results.
For the non-regular left-orders, we refer to the well-known semidirect product decomposition
BS(1, q) ∼= Z[1/q] o Z, where additionally Z[1/q] is well-known to not be finitely generated.
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Lemma 2.10 ([ARS21]). Suppose that G is an extension of Z-by-N . If N is not finitely
generated, then no lexicographic orders on G where Z leads is a regular left-order.

Other left-orders B(1, q) are by induced an embedding ρ : B(1, q)→ Homeo+(R) sending a
to a map x 7→ qx and b to a map x 7→ x+ 1 [Riv10]. We have shown that some of these orders
are regular.

Theorem 2.11 ([ARS21]). The group G = BS(1, q) has regular left-orders. Moreover, all
regular-left-orders on G are induced by affine actions on R.

2.5 A new family of groups with finitely generated positive cones

Although most of my research focuses on formal languages and positive cones, finitely generated
positive cones (which are a subset of regular positive cones) have the advantages of being easy
to describe and of inducing an isolated point on the space of left-orders. Note that regular
positive cones do not do this, for example Z2 has many regular positive cones but no isolated
left-order. Unfortunately, not many examples of finitely generated positive cones are known. In
his 2011 paper, Navas [Nav11] constructs an infinite family of groups given by the presentation
Γn = 〈a, b | banba−1〉 for n ∈ Z, which have positive cones of rank 2. The author then poses
the following problem: for every k ≥ 3, find an infinite family of groups which admit a positive
cone of rank k. I solved this problem completely by looking into finite-index subgroups of Γn.

Theorem 2.12 ([Su20]). For every integer m ≥ 2, and integer n ≥ 2 of the form n = m−1+mt
for some odd integer t, there is a subgroup of index m in Γn = 〈a, b | banba−1〉 which admits a
positive cone of rank m+ 1.

The discovery of this particular pattern of groups was observed first in GAP by finding the
rank of the abelianization of the finite index subgroups and using it as a lower bound for the
rank of the non-abelianized version. Then, the statement was proven using a simple application
of the Reidemeister-Schreier method.

A finitely generated positive cone for F2×Z was found using the parameters m = 6, n = 2.
Since these parameters do not fit the restriction of Theorem 2.12, the positive cone is not of
rank 7. However, by following the steps of the proof we can observe that the rank is bounded
by 7, and hence finite.

2.6 Crossing left-orderable groups with Z
While the complexity of positive cones languages is well-behaved under many operations, com-
bining groups themselves result in new left-orders which behave in surprising ways: ways which
we have only begun to uncover. For example, something inherent about positive cones change
when left-orderable groups are crossed with a group with as “uncomplicated” left-orders as Z.
Free products of left-orderable groups have no isolated left-orders [DNR14] and are known to
be one-counter [DS20]. However, it was shown in 2018 that groups of the form F2n × Z have
both isolated and non-isolated orders relative to their space of left-orders [MR18]. Since having
a finitely generated positive cone implies having an isolated left-order, a natural question is
whether F2n × Z has a finitely generated positive cone. I was able to answer this question in
the affirmative for n = 1.

Theorem 2.13 ([Su20]). There exists a positive cone for F2 × Z which is finitely generated as
a semigroup.

This of course leaves open the following question.
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Question 2.14. Does F2n × Z for n > 1 have finitely generated positive cones?

Moreover, Theorem 2.13 was derived from the tools used to prove Theorem 2.12 by taking
F2 × Z as a finite index subgroup of the braid group Γ2 = 〈a, b | ba2ba−1〉. With the given
presentation, Γ2 has a finitely generated positive cone P = 〈a, b〉+ which has a very natural
geometry. Answering the following question as an intermediate step could be useful.

Question 2.15. What does the geometry of the finitely generated positive cone of F2×Z look
like under its standard generating set?

Crossing with Z does not only change topological properties of positive cones but computa-
tional ones as well. Again citing the result of Hermiller and Sunic [HS17], it is known that free
products do not admit regular positive cones. A paper by Dicks and Sunic published in 2020
show that if a group G acts on a tree with trivial edge-stabilizer (such as free products), then
it admit a quasi-morphism τ : G → Z which induce a left-order on G. The quasi-morphism
has three properties which allows it to induce a left-order: τ(g) = 0 ⇐⇒ g ∈ C for some
left-orderable group C or C is trivial, τ(g−1) = −τ(g), and |τ(g) + τ(h) − τ(gh)| ≤ 1, and we
call such a map an ordering quasi-morphism.

Interpreting the existence of τ under the lens of formal languages, we obtain that free
products of left-orderable groups with regular positive cones admit a one-counter positive cone,
which is the minimal admissible positive complexity for free products.

Proposition 2.16 ([ARS21]). Let G be a group finitely generated by (X, π) and τ : G→ Z an
ordering quasi-morphism with kernel C. If there exists τ -transducer T and a regular language
CC such that π(CC) = PC is a positive cone for C, then Pτ ∪PC is a one-counter positive cone,
where Pτ = {g ∈ G | τ(g) > 0}.

Moreover, this framework allows us to interpret crossing with Z as ‘attaching a stack’ to
our group.

Proposition 2.17 ([Su20]). Let G be a finitely generated by (X, πX). Let C be a subgroup of
G, and τ : G→ 2Z+1∪{0} be an ordering quasi-morphism computable through a τ -transducer
with kernel C. Let PC be a positive cone for C, let

P̃ = {(g, n) ∈ G× Z | τ(g) + 2n > 0} ∪ {(c, 0) | c ∈ PC}.

The set P̃ is a positive cone for G× Z.

Antoĺın, Dicks and Sunic were able to extend the ordering quasi-morphism to edge-groups
which are relatively convex in their vertex groups [ADS18]. Further work on these quasi-
morphisms could be in the following direction.

Question 2.18. Can we find ordering quasi-morphisms for amalgamated products? Can we
construct one-counter positive cones from these quasi-morphisms?

Since RAAGs can be viewed as iterated amalgated products, we have the following related
question.

Question 2.19. Can we find an ordering quasi-morphism for RAAGs and show that RAAGs
have one-counter positive cones?
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